Update degli Studi Practice Changing 2024

Undicesima Edizione

In memoria di Renzo Corvò

ROMA 30-31 gennaio 2025 Starhotels Metropole

Brain metastases: update on Practice Changing studies published on 2024

Dott Silvia Scoccianti SOC Radioterapia Ospedale Santa Maria Annunzia Firenze

ROMA 30-31 GENNAIO 2025

- My outline
- SRS or SRT in the treatment of INTACT brain mets Indications
 - Prognostic factors
- Radiotherapy withdrawal
 - Radionecrosis
- Miscellanea

-

- PERIOPERATIVE SRS or SRT
- Indications
- Prognostic factors

ROMA 30-31 GENNAIO 2025

Update degli Studi Practice Changing 2024

Brain mets from different primaries = Different diseases

Metanalyses Reviews Consensus Guidelines, Expert recommendations Randomised ph III trials Phase II trials Retrospective trial Editorial

ROMA 30-31 GENNAIO 2025

Guidelines for Brain mets published in 2024

ROMA 30-31 GENNAIO 2025

Advances in Radiation Oncology (2024) 9, 101402

Critical review

Stereotactic Radiosurgery in the Management of Brain Metastases: A Case-Based Radiosurgery Society Practice Guideline

Colton Ladbury, MD,^a Michael Pennock, MD,^b Tugba Yilmaz, MD,^c Nii-Kwanchie Ankrah, MBBS,^d Therese Andraos, MD,^e Emile Gogineni, DO,^e Grace Gwe-Ya Kim, PhD,^f Iris Gibbs, MD,⁹ Helen A. Shih, MD, MPH,^h Jona Hattangadi-Gluth, MD,[†] Samuel T. Chao, MD,[†] Susan C. Pannullo, MD,[†] Ben Slotman, MD, PhD,^k Kristin J. Redmond, MD, MPH,¹ Simon S. Lo, MB, ChB,^m and Michael Schulder, MD^{n,*}

Suitab Numb

Metast

advances

www.advancesra

Unsuitab Metastas

Specific scenarios

ROMA 30-31 GENNAIO 2025

1) What factors contribute to whether a patient might be a candidate for SRS treatment?

le	Criteria			
er of lesions	1-15			
asis size	Diameter ≤3 c	m, volume ≤14 cc		
		Cautionary		
		Number of lesions	>15	
		Metastasis size	Diamo (ope	eter 3-6 cm, volume >14 co erative management prefer
		Specific scenarios	Small men	cell lung cancer, nodular le ingeal disease
ole	le			
is size	>6 cm			
scenarios	Classical leptomer	ningeal disease		

Advances in Radiation Oncology (2024) 9, 101402

Check for updates

advances

ww.advancesradonc.o

Critical review

Stereotactic Radiosurgery in the Management of Brain Metastases: A Case-Based Radiosurgery Society Practice Guideline

Colton Ladbury, MD,^a Michael Pennock, MD,^b Tugba Yilmaz, MD,^c Nii-Kwanchie Ankrah, MBBS,^d Therese Andraos, MD,^e Emile Gogineni, DO,^e Grace Gwe-Ya Kim, PhD,^f Iris Gibbs, MD,^g Helen A. Shih, MD, MPH,^h Jona Hattangadi-Gluth, MD,[†] Samuel T. Chao, MD,[†] Susan C. Pannullo, MD,[†] Ben Slotman, MD, PhD,^k Kristin J. Redmond, MD, MPH,¹ Simon S. Lo, MB, ChB,^m and Michael Schulder, MD^{n,*}

When feasible, SIT (Single-isocenter techniques) plans can facilitate effective and efficient treatment planning and delivery for multiple metastases, allowing for time efficient clinical feasibility for initial and subsequent SRS courses

ROMA 30-31 GENNAIO 2025

2) What fractionation schemes can be used in SRS?

	•
Maximum diameter	Dose
<2 cm	20-24 Gy in single fraction
2-4 cm	27 in 3# or 30 in 5#
>4 cm	Surgery is recommended

3) What treatment volumes are used during SRS?

GTV = CTV $PTV = GTV + 0.2 \text{ mm} (\leq 1 \text{ mm whenever is possible})$

3) What technique can be used to treat multiple brain metastases using a linear accelerator?

Advances in Radiation Oncology (2024) 9, 101402

Critical review

Stereotactic Radiosurgery in the Management of Brain Metastases: A Case-Based Radiosurgery Society Practice Guideline

Colton Ladbury, MD,^a Michael Pennock, MD,^b Tugba Yilmaz, MD,^c Nii-Kwanchie Ankrah, MBBS,^d Therese Andraos, MD,^e Emile Gogineni, DO,^e Grace Gwe-Ya Kim, PhD,^f Iris Gibbs, MD,⁹ Helen A. Shih, MD, MPH,^h Jona Hattangadi-Gluth, MD,[†] Samuel T. Chao, MD,[†] Susan C. Pannullo, MD,[†] Ben Slotman, MD, PhD,^k Kristin J. Redmond, MD, MPH,¹ Simon S. Lo, MB, ChB,^m and Michael Schulder, MD^{n,*}

5) Can SRS be given concurrently with systemic therapies?

Currently, it appears most studies support concurrent systemic therapy + SRS with no need for a washout period

ROMA 30-31 GENNAIO 2025

4) What dose constraints are used for SRS?

Table 2 Common dose constraints used in SRS planning

		Standard treatment	
Organ	1 fx	3 fx	5 fx
Brain	V12 <5-10 cc ^{13,53} V10 <12 cc ⁵³	V18 <26 cc ⁵⁴ V21 <21 cc ⁵⁴ V24 <16.8 cc ⁵⁵	V25 <16 cc ⁵⁶ V28.8 <7 cc ⁵⁷ V30 <10.5-30 cc ⁵⁶
Brain stem (not medulla)	Dmax <15 Gy ⁵⁸ V10 <0.5 cc ⁵⁸	Dmax <23.1 Gy ⁵⁸ V15.9 <0.5 cc ⁵⁸	Dmax <31 Gy ⁵⁸ V23 <0.5 cc ⁵⁸
Spinal cord and medulla	Dmax <12.4-14 Gy ^{30,58} V10 <0.35 cc ⁵⁸	Dmax <20.3-22.5 Gy ^{30,58} V15.9 <0.35 cc ⁵⁸	Dmax <25.3-28 Gy ^{30,5} V22 <0.35 cc ⁵⁸
Cochlea	Dmax <9 Gy ⁵⁸	Dmax <14.4 Gy ⁵⁸	Dmax <22 Gy ⁵⁸
Optic pathway	Dmax <10 Gy ^{58,59} V8 <0.2 cc ⁵⁸	Dmax <17.4-20 Gy ^{58,59} V15.3 <0.2 cc ⁵⁸	Dmax <25 Gy ^{58,59} V23 <0.2 cc ⁵⁸

Single session Radiosurgery (SRS) and Fractionated Stereotactic Radiotherapy (SRT) in the treatment of INTACT brain metastases

ROMA 30-31 GENNAIO 2025

INTACT brain metastases: SRS/SRT for the treatment of multiple brain metastases

ROMA 30-31 GENNAIO 2025

Article Survival after Stereotactic Radiosurgery in the Era of Targeted **Therapy: Number of Metastases No Longer Matters**

James de Boisanger ^{1,2,*}, Martin Brewer ¹, Matthew W. Fittall ³, Amina Tran ¹, Karen Thomas ¹, Sabine Dreibe ¹, Antonia Creak ¹, Francesca Solda ¹, Jessica Konadu ¹, Helen Taylor ¹, Frank Saran ⁴, Liam Welsh ¹ and Nicola Rosenfelder ¹

- ¹ The Royal Marsden Hospital, London SW3 6JJ, UK
- The Institute of Cancer Research, London SM2 5NG, UK
- Cancer Institute, University College London, London WC1E 6BT, UK
- Cancer and Blood Service, Auckland City Hospital, Auckland 1023, New Zealand
- * Correspondence: james.deboisanger@rmh.nhs.uk

Cyberknife or Linac-based SRS/SRT

n= 1181

Retrospective study

ROMA 30-31 GENNAIO 2025

BM number

Figure 1. Kaplan-Meier curve presenting survival according to no. of BM groups.

Neuro-Oncology

XX(XX), 1–13, 2024 | https://doi.org/10.1093/neuonc/noae201 | Advance Access date 28 September 2024

Stereotactic radiosurgery for 1–10 brain metastases to avoid whole-brain radiotherapy: Results of the **CYBER-SPACE** randomized phase 2 trial

Rami A. El Shafie[®], Denise Bernhardt[®], Thomas Welzel, Annabella Schiele, Daniela Schmitt, Paul Thalmann, Sinem Erdem, Angela Paul, Simon Höne, Kristin Lang, Laila König, Fabian Weykamp, Sebastian Adeberg, Adriane Lentz-Hommertgen, Cornelia Jäkel, Farastuk Bozorgmehr, Ursula Nestle, Michael Thomas, Anja Sander, Meinhard Kieser, Jürgen Debus[†], and Stefan Rieken[†]

- If subsequently new BM occurred, SRS was repeated.
- WBRT was indicated upon occurrence of >10 new BM, leptomeningeal disease, or exhausted SRS-radiotolerance.
- The primary outcome was freedom from WBRT indication (WBRTi).
- Secondary outcomes included overall survival (OS), _ safety, and quality of life.

Key Points

- Repeated stereotactic radiosurgery (SRS) for multiple brain metastases avoids wholebrain radiotherapy (WBRT) and neurologic death.
- The more sensitive SPACE MRI sequence did not improve outcomes over MPRAGE sequence.
- SRS with concurrent immuno-/targeted therapies is well tolerated and associated with favorable overall survival

Phase 2 trial

ROMA 30-31 GENNAIO 2025

Update degli Studi Practice Changing 2024

Table 2. Treatment and Outcome Parameters Over the Course of the Trial

	SPACE (<i>n</i> = 93)	MPRAGE (<i>n</i> = 99)	Total (<i>n</i> = 19
Lesions treated with			
20 Gy	463 (88.9%)	445 (88.3%)	908 (88.6%)
18 Gy	35 (6.7%)	38 (7.5%)	73 (7.1%)
6 × 5 Gy	23 (4.4%)	21 (4.2%)	44 (4.3%)
SRS courses per patient before reaching WBRTi (in- cluding re-treatment of new lesions during follow-up)			
1	55 (59.1%)	53 (53.5%)	108 (56.3%)
2	18 (19.4%)	22 (22.2%)	40 (20.8%)
3	10 (10.8%)	9 (9.1%)	19 (9.9%)
≥4	10 (10.8%)	15 (15.2%)	25 (13.0%)
Total number of treated lesions before reaching WBRTi			
1	16 (17.2%)	17 (17.2%)	33 (17.2%)
2–4	36 (38.7%)	44 (44.4%)	80 (41.7%)
5–10	28 (30.1%)	27 (27.3%)	55 (28.6%)
>10	13 (14.0%)	11 (11.1%)	24 (12.5%)

Freedom from WBRTi: Kaplan–Meier Curve by Study Arm

+ SPACE + MPRAGE

INTACT brain metastases: Fractionated Stereotactic Radiotherapy, SRT

ROMA 30-31 GENNAIO 2025

SECTION EDITOR REVIEW SERIES

Hypofractionated Stereotactic Radiosurgery in the Management of **Brain Metastases**

Eric J. Lehrer, MD, MS ⁽¹⁾*, William G. Breen, MD*, Raj Singh, MD[‡], Joshua D. Palmer, MD[‡], Paul D. Brown, MD*, Daniel M. Trifiletti, MD[§], Jason P. Sheehan, MD, PhD^{||}

*Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA; *Department of Radiation Oncology, Ohio State University Wexner Medical Center, Columbus, Ohio, USA; [§]Department of Radiation Oncology, Mayo Clinic, Jacksonville, Florida, USA; ^{II}Department of Neurological Surgery, University of Virginia, Charlottesville, Virginia, USA Correspondence: Eric J. Lehrer, MD, MS, Department of Radiation Oncology, Mayo Clinic, 200 1st St SW Rochester, MN 55905, USA. Email: ericjlehrer@gmail.com; lehrer.eric@mayo.edu

Received, August 14, 2023; Accepted, January 09, 2024; Published Online, March 21, 2024.

Neurosurgery 95:253-258, 2024

https://doi.org/10.1227/neu.000000000002897

Author	Ν	Median follow-up (mo)	Dose (Gy)	1-year LC (%)	1-year ARE/RN (%)
Minniti et al ¹⁵	101	16.0	27 Gy in 3 fractions	93	9% (any grade) 5% (symptomatic)
Keller et al ⁴¹	187	15.0	33 Gy in 3 fractions	88.2	19%
Soliman et al ⁴³	122	16.0	30 Gy in 5 fractions	84	7% (symptomatic)
Eitz et al ⁴⁴	558	12.3	30 Gy in 5 fractions	84	8.6%

ARE, adverse radiation events; Gy, gray; n, number of patients; RN, radiation necrosis.

TABLE 3. Studies Using Hypofractionated Radiosurgery in the Upfront Setting					
Author	n	Median follow-up (mo)	Dose (Gy)	1-year LC (%)	1-year ARE/RN (%)
Minniti et al ¹⁶	138 ^a	29	27 Gy in 3 fractions	91	8%
Wegner et al ⁴⁵	36	24 (surviving patients)	24 Gy in 2–5 fractions	63	0%
Navarria et al ⁴⁶	102	14	27 Gy in 3 fractions and 32 Gy in 4 fractions	96	5.8% (required surgical resection)

ARE, adverse radiation events; Gy, gray; n, number of patients; RN, radiation necrosis. ^aFractionated stereotactic radiosurgery group only.

Review

ROMA 30-31 GENNAIO 2025

Update degli Studi Practice Changing 2024

TABLE 1. Normal Brain Dose Constraints to Minimize Risk of Adverse Radiation Events/Radiation Necrosis

		Single-fraction SRS
Study	Constraint	ARE/RN risk and notes
Flickinger et al ¹⁹	V ₁₂ < 10 cm ^{3a}	Symptomatic ARE/RN risk markedly increases above 10 cm ³ Risk dependent on the intracranial location, where the greate associated with pontine/midbrain lesions Study analyzed AVMs only
Milano et al ²⁹ (HyTEC)	$V_{12} < 5 \text{ cm}^{3a}$	<10% symptomatic ARE/RN risk
	$V_{12} < 10 \text{ cm}^{3a}$	<15% symptomatic ARE/RN risk
	$V_{12} < 15 \text{ cm}^{3a}$	<20% symptomatic ARE/RN risk
Blonigen et al ³⁰	$V_{10} > 10.5 \text{ cm}^{3b}$ $V_{12} > 7.9 \text{ cm}^{3}$	Recommended consideration of HSRS to minimize risk of ARE/F constraints are exceeded
Minniti et al ¹³	$V_{12} < 8.5 \text{ cm}^{3b}$ $V_{12} < 10.9 \text{ cm}^{3b}$	Symptomatic ARE/RN risk >10% and >50% for V12 Gy > 8.5 cm respectively Correlation with any grade and symptomatic ARE/RN with th variables although correlation was notably higher for sympto
Hanna et al ³¹	$V_{12} < 10 \text{ cm}^{3b}$	Not reported
3-fraction HSRS		
Milano et al ²⁹ (HyTEC)	$V_{20} < 20 \text{ cm}^{3a}$	<10% risk of any ARE/RN
Minniti et al ¹⁶	$V_{18} < 30 \text{ cm}^{3b}$	≤10% risk of any ARE/RN Study only included intact brain metastases
Minniti et al ¹⁵	$V_{24} < 16.8 \text{ cm}^{3b}$	<10% risk of any ARE/RN Study only included postoperative cavities
5-fraction HSRS		
Milano et al (HyTEC) ^{29,a}	$V_{24} < 20 \text{ cm}^3$	<10% risk of any ARE/RN
Tanenbaum et al ³²	PTV D _{max} < 33.5 Gy	PTV hotspots of 33.5 Gy or higher were significantly associated ARE/RN CTV hotspots were not predictive of radiographic ARE/RN

ARE, adverse radiation effects; AVM, arteriovenous malformation; CTV, clinical target volume; D_{max}, maximum point dose; HSRS, hypofractionated stereotactic radiosurgery; Gy, gray; HyTEC, hypofractionated treatment effects in the clinic; PTV, planning target volume; RN, radiation necrosis; SRS, stereotactic radiosurgery; V_x, volume of brain received 41467_2024 of radiation.

INTACT brain metastases:

ROMA 30-31 GENNAIO 2025

Update degli Studi Practice Changing 2024

Prognostic factors

Kanakaraian et al. BMC Medical Informatics and Decision Making (2024) 24:177 https://doi.org/10.1186/s12911-024-02579-z

BMC Medical Informatics and Decision Making

SYSTEMATIC REVIEW

Factors associated with the local control of brain metastases: a systematic search and machine learning application

Hemalatha Kanakarajan^{1*}, Wouter De Baene¹, Karin Gehring^{1,3}, Daniëlle B. P. Eekers⁴, Patrick Hanssens^{2,3} and Margriet Sitskoorn^{1*}

SRS

- Tyrosine kinase inhibitor [118]
- Previous craniotomy [107]
- Upfront SRT [89]
- Higher number of radiation shots [115]

Review

RCC specific GPA score [122]

Factors associated with worse LC:

- 99, 101, 102, 103, 105, 106, 107, 109, 112, 113, 114, 115, 118, 119, 121, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133] 116, 117, 118, 120, 125, 130, 134, 135] lymphocyte count ratio [93]

- Higher tumor volume [12, 88, 89, 91, 95, 97, Larger tumor size [89, 97, 103, 113, 114, Brainstem location [116] Higher relative cerebral blood volume [101] Active systemic metastases [98] Pre-treatment neutrophil percentage [94] Higher PLR [94] Pre-SRT neutrophil-to-lymphocyte ratio [99] Extracranial progression [100] Increase in Ktrans ratio [136] Cystic lesions [137] Absolute neutrophil count-absolute Renal cell histology [112] Radioresistant tumor histology [114] Colorectal histology [89] SRT for progressive lesion [89]
- Previous resection [138]
- Higher RPA class [102] Neurological symptoms [139]
- DS-GPA [132]
- Extracerebral metastases [139]

ROMA 30-31 GENNAIO 2025

Update degli Studi Practice Changing 2024

SRT

Factors associated with better LC:

- Higher radiation dose [140, 141. 142]
- Prior surgery [143]
- Adenocarcinoma as the histological type [140]
- Tumor volume decrease after first SRT [144]
- Higher KPS [144]

Factors associated with worse LC:

- Larger tumor size [143,145, 146]
- Melanoma histology [146,147]
- Higher tumor volume [144]
- Larger number of metastases [144]

Clinical Oncology 36 (2024) 307-317

Contents lists available at ScienceDirect

Clinical Oncology

journal homepage: www.clinicaloncologyonline.net

Original Article

Predicting Survival with Brain Metastases in the Stereotactic Radiosurgery Era: are Existing Prognostic Scores Still Relevant? Or Can we do Better?

M.W. Fittall^{*}, M. Brewer[†], J. de Boisanger[†], L. Kviat[†], A. Babiker[†], H. Taylor[†], F. Saran[‡], J. Konadu[†], F. Solda[†], A. Creak[†], L.C. Welsh[†], N. Rosenfelder[†]

* Cancer Institute, University College London, London, UK

[†]The Department of Neuro-oncology, Royal Marsden NHS Foundation Trust, London, UK

[‡]Cancer and Blood Service, Auckland City Hospital, Auckland, New Zealand

Inclusion of Total Brain Tumor Volume

n=1037

ROMA 30-31 GENNAIO 2025

Ocaña-Tienda et al. Cancer Imaging (2024) 24:111 https://doi.org/10.1186/s40644-024-00753-0

RESEARCH

Cancer Imaging

Open Access

Morphological MRI features as prognostic indicators in brain metastases

Beatriz Ocaña-Tienda^{1*}, Julián Pérez-Beteta¹, Ana Ortiz de Mendivil², Beatriz Asenjo³, David Albillo⁴, Luís A. Pérez-Romasanta⁵, Manuel LLorente⁴, Natalia Carballo⁴, Estanislao Arana^{6†} and Víctor M. Pérez-García^{1†}

	Median difference (months)	Best threshold	<i>p</i> value	HR
Pre-treatment				
Total Volume (cm ³)	3.3	8.30	0.051	1.009 (0.984, 1.035)
Necrotic Volume (cm ³)	3.3	0.10	0.097	1.622 (0.909, 2.896)
Necrosis yes/no	-	-	0.682	0.896 (0.528, 1.520)
Surface Regularity	-	0.64	0.110	6.91 (0.257, 185.64)
Surface Regularity (> 3 cm ³)	4.9	0.65	0.032	2.384 (1.049, 5.422)
CE rim width (cm)	3.6	0.60	0.234	0.759 (0.481, 1.198)
Post-treatment				
Total Volume (cm ³)	8.6	1.17	<i>p</i> < < 0.001	3.510 (2.199, 5.603)
Necrotic Volume (cm ³)	7.3	0.09	0.004	3.039 (1.932, 4.779)
Necrosis yes/no	6.4	-	0.021	1.919 (1.090, 3.379)
Surface Regularity	5.5	0.65	0.068	1.525 (0.965, 2.408)
CE rim width (cm)	5.1	0.49	<i>p</i> < < 0.001	2.609 (1.661, 4.098)
Total Volume (post/pre)	7.4	0.50	<i>p</i> < < 0.001	3.610 (2.268, 5.747)

Table 3 Results of univariate Cox and Kaplan–Meier analyses of imaging biomarkers obtained from pre-treatment and post-treatment RM images

HR Hazard Ratio, CE Contrast enhanced. P values correspond to the log rank test and data in parenthesis are 95% confidence intervals for the HR

n=128

ROMA 30-31 GENNAIO 2025

INTACT brain metastases: Brain mets from different primary tumors are different diseases

ROMA 30-31 GENNAIO 2025

INTACT brain metastases:

Different Prognosis

ROMA 30-31 GENNAIO 2025

Update degli Studi Practice Changing 2024

Brain mets from different primary tumors are different diseases

Clinical Oncology 36 (2024) 307-317

Contents lists available at ScienceDirect

journal homepage: www.clinicaloncologyonline.net

Original Article

Predicting Survival with Brain Metastases in the Stereotactic Radiosurgery Era: are Existing Prognostic Scores Still Relevant? Or Can we do Better?

M.W. Fittall^{*}, M. Brewer[†], J. de Boisanger[†], L. Kviat[†], A. Babiker[†], H. Taylor[†], F. Saran[‡], J. Konadu[†], F. Solda[†], A. Creak[†], L.C. Welsh[†], N. Rosenfelder[†]

* Cancer Institute, University College London, London, UK

[†]The Department of Neuro-oncology, Royal Marsden NHS Foundation Trust, London, UK

[‡]Cancer and Blood Service, Auckland City Hospital, Auckland, New Zealand

Retrospective study

ROMA 30-31 GENNAIO 2025

INTACT brain metastases:

ROMA 30-31 GENNAIO 2025

Different Prognostic Factors

Brain mets from different primary tumors are different diseases

Kanakarajan et al. BMC Medical Informatics and Decision Making (2024) 24:177 https://doi.org/10.1186/s12911-024-02579-z

BMC Medical Informatics anc Decision Making

SYSTEMATIC REVIEW

Review

Open Access

Check for updates

Factors associated with the local control of brain metastases: a systematic search and machine learning application

Hemalatha Kanakarajan^{1*}, Wouter De Baene¹, Karin Gehring^{1,3}, Daniëlle B. P. Eekers⁴, Patrick Hanssens^{2,3} and Margriet Sitskoorn¹

Factors associated with better LC:

- EGFR mutations[56, 57, 58]
- Larger conformality index[16, 58, 59]
- Higher tumor sphericity[18]
- Controlled primary tumor[57]
- Higher zone percentage of brain metastases[60]
- ALK translocation [56]
- EGFR-TKI naive [61]
- Adenocarcinoma histology [62]
- Higher radiation dose[16, 18, 57, 59, 62, 63]
- Use of perfexion model [16]
- Higher KPS score [57, 58]
- Younger age [58]

Factors associated with worse LC:

- Larger tumor size[18, 56, 58]
- Presence of extracranial metastases[57, 58]
- Larger number of metastases [58]
- Cerebellar location [59]
- Squamous histology [58]
- Number of radiation shots[16, 64]
- Prior WBRT [16,58]
- WBRT within 2 months[16]
- Number of radiation targets [64]
- Time of day when SRT is done (after 11:41 am)[64]
- Prior craniotomy[60]

ROMA 30-31 GENNA

Fig. 2 The factors associated with LC of Lung cancer brain metastases

Kanakarajan et al. BMC Medical Informatics and Decision Making (2024) 24:177 https://doi.org/10.1186/s12911-024-02579-z

BMC Medical Informatics and Decision Making

SYSTEMATIC REVIEW

Open Access

Check for updates

Factors associated with the local control of brain metastases: a systematic search and machine learning application

Hemalatha Kanakarajan^{1*}, Wouter De Baene¹, Karin Gehring^{1,3}, Daniëlle B. P. Eekers⁴, Patrick Hanssens^{2,3} and Margriet Sitskoorn¹

Factors associated with better LC:

- Single brain metastasis [78]
- Higher radiation dose [78, 79]
- Treatment with a BRAF inhibitor within 4 weeks of SRS [78]
- Prior surgery [78]
- Prior WBRT [78]

Factors associated with worse LC:

- Higher tumor volume [80,81]
- Intratumoral hemorrhage [81]
- Larger lesion size [78]
- Presence of NRAS mutation [82]
- No previous conventional systemic agents [81]
- Older age [78]

Fig. 4 The factors associated with LC of melanoma brain metastases

ROMA 30-31 GENNAIO 2025

Kanakarajan et al. BMC Medical Informatics and Decision Making (2024) 24:177 https://doi.org/10.1186/s12911-024-02579-z

BMC Medical Informatics and Decision Making

SYSTEMATIC REVIEW

Factors associated with the local control of brain metastases: a systematic search and machine learning application

Hemalatha Kanakarajan^{1*}, Wouter De Baene¹, Karin Gehring^{1,3}, Daniëlle B. P. Eekers⁴, Patrick Hanssens^{2,3} and Margriet Sitskoorn^{1*}

Factors associated with better LC:

- Hormone receptor positivity [70]
- ERHer2goup [71]
- Use of HER2-targeting agents [25]

Factors associated with worse LC:

- Triple negative subtype [69, 76]
- SRT [70]
- Cystic lesion [25]
- Symptomatic brain lesions [70]
- Use of GK model B [25]
- Retreatment with SRT [25]

Fig. 3 The factors associated with LC of breast cancer brain metastases

ROMA 30-31 GENNAIO 2025

Different systemic treatment options

ROMA 30-31 GENNAIO 2025

Update degli Studi Practice Changing 2024

INTACT brain metastases: Brain mets from different primary tumors are different diseases

Brain mets from Breast Cancer

ROMA 30-31 GENNAIO 2025

CLINICAL RESEARCH: TUMOR

Long-term Survival From Breast Cancer Brain Metastases in the Era of Modern Systemic Therapies

D Mashiach, Elad MS^{*}; D Alzate, Juan Diego MS, MD^{*}; D De Nigris Vasconcellos, Fernando MD^{*}; Bernstein, Kenneth MS, DABR[‡]; Donahue, Bernadine R. MD[‡]; Schnurman, Zane MD, MBA^{*}; Gurewitz, Jason DO[‡]; Rotman, Lauren E. MD^{*}; Adams, Sylvia MD^{§,I}; Meyers, Marleen MD^{§,I}; Oratz, Ruth MD^{§,I}; Novik, Yelena MD^{§,I}; Kwa, Maryann J. MD^{§,I}; Silverman, Joshua S. MD, PhD[‡]; Sulman, Erik P. MD, PhD[‡]; Golfinos, John G. MD^{*}; Kondziolka, Douglas MD, MSc, FRCS(C), FACS*

OS: 17% @ 5y after SRS

Author Information 😔

n=190

Neurosurgery 94(1):p 154-164, January 2024. | DOI: 10.1227/neu.000000000002640

Long-term Survival from Breast Cancer Brain Metastases in the Era of Modern Systemic Therapies

Study Objective

- To characterize breast cancer patients with brain metastases (BCBM) that achieved longterm survival To find predictors of the causes

We reviewed prospectively between 2012-2022.

190 Patients 931 Tumors

Retrospective study

ROMA 30-31 GENNAIO 2025

Update degli Studi Practice Changing 2024

of death of BCBM patients

Methods

collected records of patients treated with SRS at our institution

429 SRS Treatments

25 months median OS from initial SRS

130 months median OS from primary breast cancer

17% of patients achieved survival \geq 5 years from SRS

Predictors of long-term survival

Use of targeted therapy Q

HER2+ receptor status

Cause of death

11% CNS-related mortality

0% CNS-related mortality in patients surviving ≥5 years

گ گ

Conclusion

The use of targeted therapy and HER2+ status are associated with long-term survival. The primary causes of death were non-CNS related and none of the patients living ≥5 years died from CNSrelated disease.

Mashiach et al

Published by Wolters Kluwer on behalf of the Congress of Neurological Surgeons

INTACT brain metastases: Brain mets from different subtypes of breast cancer are different diseases

ROMA 30-31 GENNAIO 2025

Brain mets from different subtypes of breast cancer are different diseases

	HER2 +	TN	Luminal
BM diagnosis	Continuous over time	Early	Late
Control of extracranial disease at the time of diagnosis of BMs	Frequent	Uncommon	Variable
Leptomeningeal involvement	Less common	More frequent and early	Frequent but late
Posterior fossa	More common site	Less common	Less common
Median OS after BMs diagnosis	12 m	4 m	6 m

ROMA 30-31 GENNAIO 2025

Survival analysis of patients with brain metastases at initial breast cancer diagnosis over the last decade

Research | Published: 07 March 2024

Volume 205, pages 579–587, (2024) Cite this article

Jorge Avila M, Julieta Leone, Carlos T. Vallejo, Nancy U. Lin & José P. Leone

ROMA 30-31 GENNAIO 2025

HR+/HER2+ OS: 12,2% @ 8y

Results

1,939 patients with brain metastases at initial breast cancer diagnosis were included. Factors associated with this presentation were grade III/IV tumors, ductal histology, hormone receptor (HR)-negative/human epidermal growth factor receptor 2 (HER2)-positive subtype, and extracranial metastases. Patients with HR-positive/HER2-positive disease had the longest OS (median 18 months) and 12.2% were alive at 8 years. Factors associated with shorter OS included older age, lower income, triple-negative subtype, higher grade, and visceral metastases.

Conclusion

Over the last decade, the median OS of patients with brain metastases at initial breast cancer diagnosis remained poor; however, a substantial minority survive 5 or more years, with rates higher in patients with HER2-positive tumors. In addition to tumor subtype, OS varied according to age, extracranial metastases, and sociodemographic factors.

Review

Current Evidence in the Systemic Treatment of Brain Metastases from Breast Cancer and Future Perspectives on New Drugs, Combinations and Administration Routes: A Narrative Review

Ornella Garrone ^{1,*}, Fiorella Ruatta ¹, Carmen Giusy Rea ¹, Nerina Denaro ¹, Michele Ghidini ¹, Carolina Cauchi ¹, Claudia Bareggi ¹, Barbara Galassi ¹, Marco C. Merlano ^{2,†} and Roberto Rosenfeld ^{1,†}

Cancers 2024, 16, 4164. https://doi.org/10.3390/cancers16244164

- WILLIAM SHAKESPEARE

ROMA 30-31 GENNAIO 2025

Brain metastases from HER2+ Breast Cancer

Nearly 50% of patients with advanced HER2-positive BC will eventually develop BMs, even in cases of absent or stable extracranial disease

ROMA 30-31 GENNAIO 2025

Cancer Treatment Reviews 132 (2025) 102853

Anti-tumour Treatment

Expert recommendations on treatment sequencing and challenging clinical scenarios in human epidermal growth factor receptor 2-positive (HER2-positive) metastatic breast cancer

Rupert Bartsch^a, David Cameron^b, Eva Ciruelos^{c,d}, Carmen Criscitiello^{e,f}, Giuseppe Curigliano^{e,f}, Francois P Duhoux^g, Theodoros Foukakis^{h,i}, Joseph Gligorov^j, Nadia Harbeck^k, Nathalie LeVasseur¹, Alicia Okines^{m,n}, Frederique Penault-Llorca^o, Volkmar Müller^{p,*}

Expert recommendations

ROMA 30-31 GENNAIO 2025

Check for updates

		ChT contraindication	Trastuzumab (± pertuzumab) + ET	
Tiret	HR+	No ChT contraindication	Trastuzumab + pertuzumab + taxane for ≥ 6 cycles followe trastuzumab + pertuzumab + ET until progression	
FIISL		ChT contraindication	Trastuzumab + pertuzumab until progression	
	HR–	No ChT contraindication	Trastuzumab + pertuzumab + taxane for ≥ 6 cycles followe trastuzumab + pertuzumab until progression	
Socord	No, un metas	known or stable brain tases	T-DXd (preferred) T-DM1	
Second	Active	brain metastases [†]	Tucatinib + trastuzumab + capecitabine (preferred) T-DXd	
Third	No, un metast	known or stable brain tases	Tucatinib + trastuzumab + capecitabine T-DXd T-DM1	
	Active	brain metastases†	Tucatinib + trastuzumab + capecitabine	
	No, un metast	known or stable brain tases	Lapatinib + trastuzumab Trastuzumab + ChT Margetuximab + ChT [‡] Neratinib + ChT [‡]	
Later	Active	brain metastases†	T-DXd Lapatinib + trastuzumab Trastuzumab + ChT Margetuximab + ChT [‡] Neratinib + ChT [‡]	

Systemic treatmente for BM from HER2+ Breast Cancer

RT-			
	Retrospect ive analysis of BM pts	T-DM1	Emilia trial
	Explorator y final analysis	T-DM1	Kamilla trial
	Single arm phase II	T-Dxd	Tuxedo-1 trial
	Retrospect ive	T-Dxd	Roset-BM
	Ph III	Tucatinib Trastuzumab Capecitabine	HER2CLIMB Trial
	Single arm phase II	T-Dxd	Debbrah trial

ROMA 30-31 GENNAIO 2025

BMs are classified as **stable**

- corticosteroid therapy

This BM, if treated with SRS, may be classified as stable

ROMA 30-31 GENNAIO 2025

Update degli Studi Practice Changing 2024

if stabilized at least 14 days after local therapy if the patient does not need anti-convulsive or

This BM may be classified as active

GENERAL SESSION ABSTRACTS | MAY 02 2024

Abstract GS01-10: HER2CLIMB-02: Randomized, Double-Blind Phase 3 Trial of Tucatinib and Trastuzumab Emtansine for Previously Treated HER2-Positive Metastatic Breast Cancer

Sara Hurvitz; Sherene Loi; Joyce O'Shaughnessy; Alicia Okines; Sara Tolaney; Joo Hyuk Sohn; Cristina Saura; Xiaofu Zhu; David Cameron; Thomas Bachelot; Erika Hamilton; Giuseppe Curigliano; Antonio Wolff; Nadia Harbeck; Norikazu Masuda; Linda Vahdat; Khalil Zaman; Frances Valdes-Albini; Margaret Block; Timothy Pluard; Tira Tan; Chelsea Gawryletz; Arlene Chan; Philippe Bedard; Rinat Yerushalmi; Binghe Xu; Konstantinos Tryfonidis; Michael Schmitt; Joan Xie; Virginia Borges

HER2CLIMB-02 Study Design

Phase III trial

This is the second randomized study which included patients with brain metastases to demonstrate that a tucatinib-containing regimen delays disease progression in HER2+ LA/MBC

n=463

ROMA 30-31 GENNAIO 2025

	T-DM1 + Tucatinib (N=228)	T-DM1 + Piscebo (N=235)
Presence or history of brain metastases, n (%)		
Yes	99 (43.4)	105 (44.7)
Active	50 (21.9)	57 (24.3)
Treated stable	49 (21.5)	48 (20.4)
Not	129 (56.6)	130 (55.3)
Stage at initial diagnosis, n (%) ^b		
0-111	120 (52.6)	130 (55.3)
IV	103 (45.2)	98 (41.7)

Toto
Brain met
Treated/Stable
Brain met

Primary endpoint

Key secondary endpoin

Secondary endpoints

ORR (BICR and

investigator)

DOR (BICR)

Safety

PFS (investigator)

PFS (BICR)

• OS

Trastuzumab deruxtecan versus trastuzumab emtansine in HER2-positive metastatic breast cancer patients with brain metastases from the randomized DESTINY-Breast03 trial

S. A. Hurvitz^{1+†}, S.-B. Kim², W.-P. Chung³, S.-A. Im⁴, Y. H. Park⁵, R. Hegg⁶, M.-H. Kim⁷, L.-M. Tseng⁸, V. Petry⁹, C.-F. Chung¹⁰, H. Iwata¹¹, E. Hamilton¹², G. Curigliano^{13,14}, B. Xu¹⁵, A. Egorov¹⁶, Y. Liu¹⁷, J. Cathcart¹⁶, E. Bako¹⁸, K. Tecson¹⁷, S. Verma¹⁹ & J. Cortés^{20,21,22}

T-DXd

5.4 mg/kg Q3W

(n = 261)

T-DM1

3.6 mg/kg Q3W

(n = 263)

DESTINY-Breast03

DESTINY-Breast03: First Randomized Ph3 Study of T-DXd

An open-label, multicenter study (NCT03529110)

Patients

- Unresectable or metastatic HER2-positive^a breast cancer
- Previously treated with trastuzumab and taxane in advanced/metastatic setting^b
- Could have clinically stable, treated brain metastas

Stratification factors

- Hormone receptor status
- Prior treatment with pertuzumab
- History of visceral disease

nterim analysis for PFS (data cutoff: May 21, 2021)

- Efficacy boundary for superiority: P < 0.000204 (based on 245 events)
- IDMC recommendation to unblind study (July 30, 2021)
- Key secondary endpoint, OS: boundary for efficacy: P < 0.000265 (based on 86 events)</p>

BICR, blinded independent central review; DOR, duration of response; ORR, objective response rate; OS, overall survival; PFS, progression-free survival; Ph3, phase 3 Q3W, every 3 weeks *HER2 IHC3+ or IHC2+/ISH+ based on central confirmation. *Progression during or <6 months after completing adjuvant therapy involving trastuzumab and taxar

n=82

⁰²¹ ESV

Prior treatment for BMs: T-DXd group: 53,5% T-DM1 group: 51.3%

Time since prior RT to the brain: T-DXd group: 1.6 m T-DM1 group: 3.4 m

n=82

Phase III trial **1A 30-31 GENNAIO 2025**

Update degli Studi Practice Changing 2024

Brain metastases at baseline

Time (month) Patients still at risk: T-DXd (43) 43 41 40 39 39 38 34 33 33 29 26 24 23 20 14 13 10 7 6 4 3 2 2 1 1 0 0 T-DM1 (39) 39 38 28 17 15 15 9 6 6 5 3 3 2 2 2 2 1 1 1 1 1 0 0 0 0 0

Figure 2. Confirmed systemic ORR in patients with and without BMs.

A

BMs, brain metastases; CR, complete response; ORR, objective response rate; PR, partial response; T-DM1, trastuzumab emtansine; T-DXd, trastuzumab deruxtecan.

Ð	M	1			
2	8-	5.	8)		

Difference of T-DXd versus T-DM1, % (95% CI) 45.5 (37.6-53.4) 46.9 (25.6-68.3) 45.5 (36.9-54.1)

ORIGINAL RESEARCH

The efficacy of sacituzumab govitecan and trastuzumab deruxtecan on stable and active brain metastases in metastatic breast cancer patients—a multicenter real-world analysis

D. Dannehl^{1*}, D. Jakob², F. Mergel³, A. Estler⁴, T. Engler¹, L. Volmer¹, M.-L. Frevert², S. Matovina¹, A. Englisch¹, C. M. Tegeler¹, A. Rohner¹, A. Seller¹, M. Hahn¹, K. Pfister³, A. Fink³, I. Popp⁵, S. Lorenz⁶, G. Tabatabai⁷, I. Juhasz-Böss², W. Janni³, S. Brucker¹, F.-A. Taran², A. Hartkopf^{1,3} & H. Schäffler³

Volume 9 ■ Issue 5 ■ 2024

n=26; Sacituzumab Govitecan: n=12; Trastuzumab Deruxtecan: n=16 Active BM: 10 out of 26

Median intracranial PFS: SG = 2.7 monthsT-DXd = 11.2 months

Retrospective study

ROMA 30-31 GENNAIO 2025

Update degli Studi Practice Changing 2024

https://doi.org/10.1016/j.esmoop.2024.102995

SG and T-DXd showed promising clinical activity in both stable and active BCBMs

EDITORIAL

Antibody-drug conjugates are active in patients with hekz-positive breast cancer brain metastases: where do we go from here?

S. Sammons^{1,2,3} & N. U. Lin^{1,2,3*}

T-DXd in the second line for patients with extracranial progression who have stable BrMs with low brain metastasis **velocity**, or those with small asymptomatic/untreated lesions.

Tucatinib/capecitabine/trastuzumab for patients with previously treated but progressive lesions and those with high brain metastasis velocity

Editorial

ROMA 30-31 GENNAIO 2025

The Breast 76 (2024) 103742

The Breast

Contents lists available at ScienceDirect

journal homepage: www.journals.elsevier.com/the-breas

"Positioning of tucatinib in the new clinical scenario of HER2-positive metastatic breast cancer: An Italian and Spanish consensus paper"

Pierfranco Conte^a, Eva Ciruelos^{b, c, d}, Giuseppe Curigliano^{e, f}, Michelino De Laurentiis⁸ **3.2 - Currently, from a sequenci** Lucia Del Mastro^{h,i}, Alessandra Gennari^j, Antonio Llombart^{k,1}, Miguel Martìn^m, Francesca Poggio^{h,*}, Aleix Prat^{n, o, p, q, r}, Fabio Puglisi^{s, t}, Cristina Saura^u

the metastatic setting is: taxand trastuzumab/tucatinib/capecitab

2.4 - Tucatinib has the most rob treatment efficacy of patients w

Expert recommendations

ROMA 30-31 GENNAIO 2025

0	2	22	30	26
3	%		98%	
1	1	24	30	24
3	%		98%	
	0 3	0 2 3% 1 1 3%	0 2 22 3% 22 3% 24	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Home > Journal of Neuro-Oncology > Article

Impact of concurrent antibody-drug conjugates and radiotherapy on symptomatic radiation necrosis in breast cancer patients with brain metastases: a multicenter retrospective study

Research | Published: 22 April 2024

Volume 168, pages 415–423, (2024) Cite this article

R	ADC (T-DM1 or T-	Koide et al JNO
bef	DXd)	2024
systemic		

Among the 168 pts, The groups with and without concurrent ADC 48 received ADC, had 5 SRNs in 19 patients and 13 SRNs in 149 19 had concurrent ADC 33% had previous BM radiation

Retrospective study

ROMA 30-31 GENNAIO 2025

Update degli Studi Practice Changing 2024

I within 4 w 2y-Symptomatic RN ore or after 27% vs 7% treatment

Radionecrosis: G2 n=11; G3 n=7

Brain metastases from HER2 LOW Breast Cancer

ROMA 30-31 GENNAIO 2025

ORIGINAL RESEARCH

Incidence and outcome of brain and/or leptomeningeal metastases in HER2low metastatic breast cancer in the French ESME cohort

N. Epaillard^{1*}, A. Lusque², W. Jacot³, A. Mailliez⁴, T. Bachelot⁵, M. Arnedos⁶, F. Le Du⁷, E. Brain⁸, J. M. Ferrero⁹, V. Massard¹⁰, I. Desmoulins¹¹, M. A. Mouret-Reynier¹², C. Levy¹³, A. Gonçalves¹⁴, M. Leheurteur¹⁵, T. Petit¹⁶, T. Filleron², L. Bosquet¹⁷, B. Pistilli^{1,18} & J. S. Frenel¹⁹

¹Department of Medical Oncology, Gustave Roussy, Villejuif; ²Biostatistics & Health Data Science Unit, Institut Claudius Regaud, IUCT Oncopole, Toulouse; ³Department of Medical Oncology, Institut régional du Cancer, Montpellier; ⁴Department of Medical Oncology, Centre Oscar Lambret, Lille; ⁵Department of Medical Oncology, Centre Léon Bérard, Lyon; ⁶Department of Medical Oncology, Institut Bergonié, Bordeaux; ⁷Department of Medical Oncology, Centre Eugène Marquis, Rennes; ⁸Department of Medical Oncology, Institut Curie, Saint-Cloud; ⁹Department of Medical Oncology, Centre Antoine Lacassagne, Nice; ¹⁰Department of Medical Oncology, Institut de Cancérologie de Lorraine, Nancy; ¹¹Department of Medical Oncology, Centre Georges-François Leclerc, Dijon; ¹²Department of Medical Oncology, Centre Jean Perrin, Clermont-Ferrand; ¹³Department of Medical Oncology, Centre François Baclesse, Caen; ¹⁴Department of Medical Oncology, Institut Paoli Calmette, Marseille; ¹⁵Department of Medical Oncology, Centre Henri Becquerel, Rouen; ¹⁶Department of Medical Oncology, Centre Paul Strauss ICANS, Strasbourg; ¹⁷Health Data and Partnership Department, Unicancer, Paris; ¹⁸INSERM U1279, Gustave Roussy, Villejuif; ¹⁹Department of Medical Oncology, Institut de Cancerologie de L'Ouest, Saint-Herblain, France

status.

CI, confidence interval; dBLMM, diagnosis of brain and leptomeningeal metastases; HER2, human epidermal growth factor receptor 2; HR, hazard ratio; OS, overall survival; PFS, progression-free survival.

19585 patients

ORIGINAL RESEARCH

Trastuzumab deruxtecan in patients with previously treated HER2-low advanced breast cancer and active brain metastases: the DEBBRAH trial

M. Vaz Batista^{1,2†}, J. M. Pérez-García^{2,3†}, P. Cortez⁴, L. Garrigós^{3,5}, M. Fernández-Abad^{6,7}, M. Gion⁶, A. Martínez-Bueno⁵, C. Saavedra⁶, I. Teruel⁸, A. Fernandez-Ortega⁹, S. Servitja¹⁰, M. Ruiz-Borrego¹¹, J. de la Haba-Rodríguez¹², G. Martrat², J. Pérez-Escuredo², D. Alcalá-López², M. Sampayo-Cordero², S. Braga¹, J. Cortés^{2,3,13*} & A. Llombart-Cussac^{2,14,15*}

¹Hospital Professor Doutor Fernando Fonseca EPE, Lisbon, Portugal; ²Medica Scientia Innovation Research (MEDSIR) — Oncoclínicas & Co, Jersey City, USA, Sao Paulo, Brazil: ³International Breast Cancer Center (IBCC), Pangaea Oncology, Quiron Group, Barcelona: ⁴IOB Institute of Oncology, Hospital Ruber Internacional, Quiron Group, Madrid; ⁵Hospital Universitari Dexeus, Barcelona; ⁶Medical Oncology Department, Hospital Ramon y Cajal, Madrid; ⁷Alcalá de Henares University, Faculty of Medicine, Madrid; ⁸Institut Català d'Oncologia Badalona (ICO), Badalona, Barcelona; ⁹Institut Català d'Oncologia L'Hospitalet (ICO), L'Hospitalet de Llobregat, Barcelona; ¹⁰Hospital del Mar, Barcelona; ¹¹Hospital Universitario Virgen del Rocío, Seville; ¹²Instituto Maimonides de Investigacion Biomedica, Hospital Reina Sofia, Universidad de Córdoba, Córdoba; ¹³Universidad Europea de Madrid, Faculty of Biomedical and Health Sciences, Department of Medicine, Madrid; ¹⁴Hospital Arnau de Vilanova, FISABIO, Valencia: ¹⁵Universidad Católica de Valencia, Valencia, Spain

Phase II study HER2 + and HER2 low patients

n=12 HER2 low pts (n=6 asymptomatic and untreated and n=6 progressing BM after local treatment)

T-DXd demonstrated promising intracranial activity in pretreated HER2-low BC patients Phase II Study with active BMs

ROMA 30-31 GENNAIO 2025

Update degli S

https://doi.org/10.1016/j.esmoop.2024.103699

Brain metastases from TN Breast Cancer

ROMA 30-31 GENNAIO 2025

Breast Cancer (2024) 31:572-580 https://doi.org/10.1007/s12282-024-01565-7

ORIGINAL ARTICLE

Sacituzumab govitecan in metastatic triple-negative breast cancer patients treated at Institut Curie Hospitals: efficacy, safety, and impact of brain metastases

Alexandre De Moura¹ · Delphine Loirat¹ · Sarah Vaillant² · Sinen Korbi¹ · Nicolas Kiavue^{1,3} · Diana Bello Roufai¹ · Laurence Escalup² · Romain Desmaris² · Pauline Vaflard¹ · Paul Cottu¹ · Jean-Yves Pierga^{1,4} · François-Clément Bidard^{1,3} · Luc Cabel¹ · Alexandre Acramel^{2,5}

Among patients with brain metastases,

- median PFS 3.7 months (95%CI[2.6–6.2])
- median OS 6.7 months (95%CI[6.3–NR])

The observed response rate and safety of SG are consistent with the results of the ASCENT trial, with efficacy observed in patients with brain metastases

Retrospective study

ROMA 30-31 GENNAIO 2025

Update degli Studi Practice Changing 2024

n=31

The Breast 76 (2024) 103757

Comprehensive analysis of stereotactic Radiosurgery outcomes in triple-negative breast cancer patients with brain metastases: The influence of immunotherapy and prognostic factors \star

Menekse Turna^{a,*}, Berna Akkus Yıldırım^b, Çakır Numanoglu^b, Mustafa Halil Akboru^b, Rashad Rzazade^a, Hale Başak Çağlar^a

Anadolu Medical Center, Department of Radiation Oncology, Gebze, KOCAELI, Turkey , Cemil Tascioviu Sehir Hastanesi, Radvasvon Onkolojisi Klinivi, İstanbul, Turke

Check for updates

а

radiation.

Retrospective study

ROMA 30-31 GENNAIO 2025

Update degli Studi Practice Changing 2024

Retrospective Study n=43, 129 lesions

Local control (per patient)

Kaplan-Meier curves depicting a local control (per patient), b local control (per lesion) c distant brain control, d overall survival from the date ofster-

FFNBM= Freedom from New Brain Mets

Studio AIRO GdS Neuro-oncologico

Raccolta retrospettiva di pazienti affette da metastasi encefaliche da tumore mammario trattate con SRT in associazione alle nuove terapie farmacologiche

RaBBIT-NEW study

Radiosurgery for Breast cancer BraIn MeTastases + NEW drugs

> Centro coordinatore SOC Radioterapia OSMA, Firenze

ROMA 30-31 GENNAIO 2025

Strahlentherapie und Onkologie (2024) 200:259–275 https://doi.org/10.1007/s00066-024-02202-0

REVIEW ARTICLE

DEGRO guideline for personalized radiotherapy of brain metastases and leptomeningeal carcinomatosis in patients with breast cancer

Kai J. Borm¹ · Sophie T. Behzadi¹ · Juliane Hörner-Rieber² · David Krug³ · Rene Baumann⁴ · Stefanie Corradini⁵ · Marciana Nona Duma^{6,7} · Jürgen Dunst³ · Gerd Fastner⁸ · Petra Feyer⁹ · Rainer Fietkau¹⁰ · Wulf Haase¹¹ · Wolfgang Harms¹² · Thomas Hehr¹³ · Christiane Matuschek¹⁴ · Marc D. Piroth¹⁵ · Leonard Christopher Schmeel¹⁶ · Rainer Souchon¹⁷ · Vratislav Strnad¹⁰ · Wilfried Budach¹⁴ · Stephanie E. Combs^{1,18,19} on behalf of Breast Cancer Expert Panel of the German Society of Radiation Oncology DEGRO

Received: 3 January 2024 / Accepted: 7 January 2024 / Published online: 15 March 2024 © The Author(s) 2024

- Limited brain metastases $(n = \le 4)$:
 - Local therapy including SRS/SRΓ is generally recommended irrespective of molecular subtype and systemic therapy.
 - In case of limited intact BCBM ($n = \leq 4$), SRS/SRT should be used.
 - After resection with a limited number of remaining BCBM ($n = \leq 4$), SRS/SRT to the resection cavity should be used as postoperative treatment with additional SRS/SRT of the intact BCBM.

• Multiple brain metastases:

- SRS should be considered in case of n=5-10 intact BCBM (cumulative volume <15 ml); alternatively, WBRT can be applied.
- After resection of BCBM and limited further BCBM (n=5-10 and < 15 ml), SRS/SRT to the resection cavity and remaining intact BCBM is a possible option. Alternatively, WBRT can be applied.
- In disseminated brain metastases (n = >10), WBRT is generally recommended.
- After interdisciplinary discussion, in cases of asymptomatic disseminated brain metastases (n=>10) or in multiple BCBM if SRS/SRT is not feasible, WBRT can be postponed with early reassessment and reevaluation of local treatment options (8–12 weeks) if HER2-targeted systemic therapy with significant response rates in the CNS (tucatinib/trastuzumab/ capecitabine, trastuzumab deruxtecan) is being used.

Guidelines

ROMA 30-31 GENNAIO 2025

• Leptomeningeal carcinomatosis:

- In symptomatic leptomeningeal carcinomatosis, local radiotherapy (WBRT/involved-field SRS/SRT or local spinal irradiation) should be administered to symptomatic lesions in addition to systemic therapy.
- In case of patients with disseminated leptomeningeal carcinomatosis in good clinical condition and with limited, stable extra-CNS disease, CSI may be considered.

• Concurrent systemic therapy:

- There is a general lack of data regarding the combination of systemic therapy and SRS/SRT for brain metastases.
- Each case should be discussed individually in an interdisciplinary setting based on the type of systemic therapy, size and location of the metastases, as well as planned dose and fractionation.
- Particular caution should be taken when administering SRS/SRT concurrently (≤7 days before or ≤21 days after) with antibody drug–conjugates.

Brain mets from different subtypes of breast cancer have different systemic treatment options but data for radiotherapy withdrawal are still immature

ROMA 30-31 GENNAIO 2025

Reviews

Breast Cancer Brain Metastasis: A Comprehensive Review

Akshara S. Raghavendra, MD, MS¹ (D) and Nuhad K. Ibrahim, MD, FACP¹ (D)

DOI https://doi.org/10.1200/OP.23.00794

JCO Oncol Pract 20:1348-1359 © 2024 by American Society of Clinical Oncology

All subtypes: 8 out of 12 trials include SRS/SRT

HR+ HER2-: 0 out of 2 trials include SRS/SRT

Review

ROMA 30-31 GENNAIO

	TABLE 3. Ongoing Clinical Trials
	NCT Identifier
	All subtypes
\implies	NCT03807765
\Rightarrow	NCT03449238
\Longrightarrow	NCT03697343
\implies	NCT05703269
\implies	NCT03075072
\implies	NCT04899908
\Rightarrow	NCT05222620
	NCT03550391
	NCT04030507
	NCT05115474
	NCT04420598
	NCT03994796
	HR+ HER2-
	NCT04791384
	NCT05293964

Is Focused on Breast Cancer Brain Metastasis Including Various Subpopulations

Phase	Treatment	Biomarkers
I	SBRT + nivolumab	All subtypes
1/11	SRS + pembrolizumab	All subtypes
III	FSRT v comparison with single session radiosurgery in patients with larger brain metastases (2-4 cm)	All subtypes
III	SSRS v FSRS	All subtypes
III	Hippocampal sparing WBRT v SRS with 5-20 BMs	All subtypes
II	SRS ± AGuIX gadolinium-based nanoparticles	All subtypes
II	SRS v FSRS—FRACTIONATE trial	All subtypes
III	SRS v HA-WBRT plus memantine for ≥5 more BMS	All subtypes
II	Preventive: Screening MRI of the brain in MBCs	All subtypes
II	Screening brain MRIs in stage IV breast cancer	All subtypes
II	T-DXd	All subtypes
II	Genetic testing in guiding treatment for patients with BMs	All subtypes
lb/ll	Elacestrant and abemaciclib	HR+/HER2-
	SCR-6852, palbociclib	HR+/HER2-

Reviews

[®]Breast Cancer Brain Metastasis: A Comprehensive Review

Akshara S. Raghavendra, MD, MS ¹ 🗈 and Nuhad K. Ibrahim, MD, FACP ¹ 🗈	HER2+
	NCT0393
DOI https://doi.org/10.1200/0P.23.00794	NCT0463
	NCT0504
JCO Oncol Pract 20:1348-1359	NCT0149
© 2024 by American Society of	NCT047
Clinical Oncology	NCT0532
onnoar oncorogy	NCT0559
	NCT045
HER2+:	NCT0473
1 out of 19 trials include SPS/SPT	
	NCT0450
	NCT050

HER2-: 1 out of 5 trials include SRS/SRT

ROMA 30-31 GENNAIO 2025

HER2-

IER2+			
NCT03933982	II	Pyrotinib + vinorelbine	HER2+
NCT04639271	II	Pyrotinib + trastuzumab + Nab paclitaxel	HER2+
NCT05042791	II	Concomitant SBRT pyrotinib + capecitabine	HER2+
NCT01494662	II	Preoperative neratinib with or without capecitabine or T-DM1	HER2+
NCT04760431	II	THP v TH + TKI (neratinib or tucatinib; HER2BRAIN)	HER2+
NCT05323955	II	HP or T-DM1 + tucatinib	HER2+
NCT05593094	I	ZN-A-1041 or ZN-A-1041 combination	HER2+
NCT04512261	II	Tucatinib + trastuzumab + pembrolizumab (TOPAZ)	HER2+
NCT04739761	111	T-DXd	HER2+
NCT04760431	II	THP v TH-pyrotinib	HER2+
NCT04509596	I	DZD1516 with capecitabine or T-DM1	HER2+
NCT05018702	II	ARX788	HER2+
NCT04539938	II	T-DXd, tucatinib	HER2+
NCT03190967	1/11	Metronomic temozolomide and T-DM1	HER2+
NCT03765983	II	Paxalisib (GDC-0084) + trastuzumab	HER2+
NCT04348747	II	Anti-HER2/HER3 dendritic cell vaccine ID, celecoxib, interferon alfa-2b followed by pembrolizumab	HER2+
NCT03714243	NA	HIFU (ExAblate BBBD)	HER2+
NCT04582968	1/11	SRS or WBRT and pyrotinib + capecitabine	HER2+
NCT04158947	II	Afatinib, T-DM1	HER2+
IER2-			
NCT03328884	II	MM-39 (phenomenal)	HER2-
NCT04965064	II	Pyrotinib, capecitabine	HER2-
NCT04647916	II	Sacituzumab govitecan	HER2-

Reviews

[©]Breast Cancer Brain Metastasis: A Comprehensive Review

Akshara S. Raghavendra, MD, MS¹ (D) and Nuhad K. Ibrahim, MD, FACP¹ (D)

DOI https://doi.org/10.1200/OP.23.00794

JCO Oncol Pract 20:1348-1359 NCT Identifier Pha NCT04923542 © 2024 by American Society or NCT01770353 Clinical Oncology TNBC NCT04348747 TN: NCT03995706 3 out of 12 trials include SRS/SRT NCT02574455 NCT05255666 NCT03483012 NCT04434560 NCT03483012 NCT03761914 ||NCT04303988 NCT04789668 |/|NCT05305365 NCT04711824 |/|

ROMA 30-31 GENNAIO 2025

se	Treatment	Biomarke
	SRS + abemaciclib/ET	HER2-
	MM-398 (nanoliposomal irinotecan)	HER2-
	Anti-HER2/HER3 dendritic cell vaccine ID, celecoxib, interferon alfa-2b followed by pembrolizumab	TNBC
	Sacituzumab govitecan	TNBC
	ASCENT study, sacituzumab govitecan	TNBC
	Nal-IRI, pembrolizumab	TNBC
	SBRT + atezolizumab	TNBC
	Nivolumab + ipilimumab	TNBC
	Atezolizumab + stereotactic radiation	TNBC
	Galinpepimut-S + pembrolizumab	TNBC
	SHR-1316 + bevacizumab + cisplatin/ carboplatin	TNBC
	Bintrafusp alfa + pimasertib	TNBC
	QBS72S	TNBC
I	Olaparib + SRS → pembrolizumab	TNBC or BRCA-m

INTACT brain metastases: Radionecrosis and severe adverse effects

ROMA 30-31 GENNAIO 2025

Radiología 66 (2024) 166-180

www.elsevier.es/rx

RADIOLOGÍA

UPDATE IN RADIOLOGY

Challenges in radiological evaluation of brain metastases, beyond progression

RADIOLOGI

A. Ortiz de Mendivil^{a,*}, P. Martín-Medina^a, L. García-Cañamaque^b, B. Jiménez-Munarriz^c, R. Ciérvide^d, J. Diamantopoulos^e

^a Servicio de Radiodiagnóstico, Sección de Neurorradiología, Hospital Universitario HM Sanchinarro, Madrid, Spain

^b Servicio de Medicina Nuclear, HM Hospitales, Madrid, Spain

^c Servicio de Oncología Médica, Hospital Universitario HM Sanchinarro, Madrid, Spain

^d Servicio de Oncología Radioterápica, Hospital Universitario HM Sanchinarro, Madrid, Spain

^e Servicio de Neurocirugía, HM Hospitales, Madrid, Spain

ROMA 30-31 GENNAIO 2025

- inflammatory cloud
- incomplete ring enhancement

Journal of Neuro-Oncology (2024) 166:535-546 https://doi.org/10.1007/s11060-024-04578-6

RESEARCH

Adverse radiation effect versus tumor progression following stereotactic radiosurgery for brain metastases: Implications of radiologic uncertainty

Mia Salans¹ · Lisa Ni¹ · Olivier Morin¹ · Benjamin Ziemer¹ · Dante P. I. Capaldi¹ · David R. Raleigh^{1,2,3} · Harish N. Vasudevan^{1,2} · Jessica Chew¹ · Jean Nakamura¹ · Penny K. Sneed¹ · Lauren Boreta¹ · Javier E. Villanueva-Meyer^{2,4} · Philip Theodosopoulos² · Steve Braunstein¹

Received: 22 December 2023 / Accepted: 17 January 2024 / Published online: 5 February 2024 © The Author(s) 2024

> Radiologic uncertainty (RU) is often resolved with monitoring of serial MRIs before a diagnosis is reached or a definitive intervention is performed RU resolution took > 6 months in > 25% of cases

ROMA 30-31 GENNAIO 2025

Update degli Studi Practice Changing 2024

Fig. 1 Lesions with RU for representative patients diagnosed with ARE and tumor progression. Lesions with RU on T1 post-gadolinium MRI at A) RU onset, B) 18 months after RU onset, C) 30 months

after RU onset, and D) RU resolution for representative patients diagnosed with ARE (top panel) and tumor progression (bottom panel)

A Systematic Review Informing the Management of Symptomatic Brain Radiation **Necrosis After Stereotactic Radiosurgery and** International Stereotactic Radiosurgery Society **Recommendations**

Balamurugan Vellayappan, MBBS, FRANZCR,* Mary Jane Lim-Fat, MD, MSc, FRCPC,[†] Rupesh Kotecha, MD,[‡] Antonio De Salles, MD, PhD,^{§, ||} Laura Fariselli, MD,[¶] Marc Levivier, MD, PhD,[#] Lijun Ma, PhD,^{**} Ian Paddick, MSc,^{††} Bruce E. Pollock, MD,^{‡‡} Jean Regis, MD,^{§§} Jason P. Sheehan, MD, PhD,^{||||} John H. Suh, MD,^{¶¶} Shoji Yomo, MD, PhD,^{##} and Arjun Sahgal, MD, FRCPC***

- To provide consensus guidelines for grading and management of RN on behalf of the International Stereotactic Radiosurgery Society
- To summarize the literature specific to efficacy and toxicity of treatment paradigms for patients with symptomatic corticosteroid-refractory RN

Guidelines

ROMA 30-31 GENNAIO 2025

ſ	
5	

	/	
(C	
4		

ISR

ISRS grade Description of severity		Recommended management and follow-up	recommendat author conser	
1	Asymptomatic and no prior corticosteroid administration	 Close surveillance with repeat imaging at 6-12 wk intervals Consider a short-course of cortico- steroids (e.g. dexamethasone). Surgical resection can be considered first line if a pathologic diagnosis is urgently required to guide further management. 	Not assessable review	
2	Symptomatic and no prior corticosteroid administration	 Dexamethasone can be started as 4- 8 mg/d, with or without an initial bolus, and tapered gradually. Gen- erally, a 3-6 wk course of steroids may be required. Repeat imaging should be consid- ered at 6-12 wk intervals. Surgical resection can be considered first line if a pathologic diagnosis is urgently required to guide further management. 	Not assessable review	
3	Symptomatic and corticosteroid- refractory	 Bevacizumab at doses ranging between 5-10 mg/kg every 2-3 wk for 2-4 cycles Repeat imaging after 2 cycles and after the 4th cycle for response assessment and to guide corticosteroid tapering as required. Repeat imaging should be considered at 2-3 mo intervals to ensure improvement and/or stability. 	Moderate/stro	
		 LITT/surgery Repeat imaging should be considered at 2-3 mo intervals to ensure improvement and/or stability. 	Low/weak	
		 HBOT Repeat imaging should be considered at 2-3 mo intervals to ensure improvement and/or stability. 	Insufficient/w	
4	Symptomatic with neurologic impairment, progressive RN despite a trial of noninvasive treatments, dependency on high doses of corticosteroid	 Surgical resection Repeat imaging should be considered at 2-3 mo intervals to ensure improvement and/or stability. 	Low/strong	

Abbreviations: HBOT = hyperbaric oxygen therapy; ISRS = International Stereotactic Radiosurgery Society; LITT = laser interstitial thermal therapy; RN = radiation necrosis.

A Systematic Review Informing the Management of Symptomatic Brain Radiation **Necrosis After Stereotactic Radiosurgery and** International Stereotactic Radiosurgery Society **Recommendations**

Balamurugan Vellayappan, MBBS, FRANZCR,* Mary Jane Lim-Fat, MD, MSc, FRCPC,[†] Rupesh Kotecha, MD,[‡] Antonio De Salles, MD, PhD,^{§, ||} Laura Fariselli, MD,[¶] Marc Levivier, MD, PhD,[#] Lijun Ma, PhD,^{**} Ian Paddick, MSc,^{††} Bruce E. Pollock, MD,^{‡‡} Jean Regis, MD,^{§§} Jason P. Sheehan, MD, PhD, Shoji Yomo, MD, PhD,^{##} and Arjun Sahgal, MD, FRCPC***

ľ	٧	В	e	۷	а	ci	

Fig. 5. tion necrosis.

ROMA 30-31 GENNAIO 2025

CLINICAL RESEARCH: RADIOSURGERY AND RADIATION ONCOLOGY

Outcomes of Gamma Knife Radiosurgery for Brain Metastases in the Motor Cortex

D Prasad, Shefalika BA^{*,§,I}; Alzate, Juan Diego MD^{*,§}; Mullen, Reed BS^{*,§}; Bernstein, Kenneth MS^{‡,§}; Qu, Tanxia PhD^{‡,§}; Silverman, Joshua MD, PhD^{*,‡,§}; Kondziolka, Douglas MD^{*,‡,§}

Author Information ⊗

Neurosurgery 94(3):p 606-613, March 2024. | DOI: 10.1227/neu.000000000002716

The SRS margin dose varied from 10 to 20 Gy (mean 16.9 Gy)

symptomatic in only 1.4%. without ARE was observed in 13%.

Retrospective study

ROMA 30-31 GENNAIO 2025

n=208

- Adverse radiation effects (ARE) were noted in 6% of all tumors but were
- Median time to appearance of symptomatic ARE was 8 months. Edema
- Absence of a neurological deficit, recursive partitioning analysis Class I and II, and dose >18 Gy were each associated with a significant survival advantage.
- Patients treated before neurological deficits develop show better outcome.

Home > Journal of Neuro-Oncology > Article

Association between tumor location and toxicity outcomes after stereotactic radiosurgery for brain metastases

Case Study | Published: 15 November 2024

Volume 171, pages 473–483, (2025) Cite this article

Boya Wang, Alexandra Bukowski, Orit Kaidar-Person, James M. Choi, Deanna M. Sasaki-Adams, Sivakumar Jaikumar, Dominique M. Higgins, Matthew G. Ewend, Soma Sengupta, N=215, 605 Lesions Timothy M. Zagar, Theodore K. Yanagihara, Joel E. Tepper, Lawrence B. Marks & Colette J Shen 🗹 🔷 Show fewer authors

Brain metastasis location in the motor or sensory cortex is associated with increased risk of new-onset seizure following SRS and may warrant consideration of steroid and/or anti-epileptic prophylaxis.

Symptomatic radiation necrosis is uncommon in the cerebellum

Retrospective study

ROMA 30-31 GENNAIO 2025

Radiotherapy and Oncology 197 (2024) 110330

Contents lists available at ScienceDirect Radiotherapy and Oncology

journal homepage: www.thegreenjournal.com

The effect of time-delayed contrast-enhanced scanning in determining the gross tumor target volume of large-volume brain metastases

Shanshan Du^{a,b}, Guanzhong Gong^b, Mingming Chen^c, Rui Liu^b, Kangning Meng^b, Yong Yin^{b,*}

^a Department of Oncology, Afliated Hospital of Southwest Medical University, No.25 Taiping Street, Jiangyang District, Luzhou 646000, Sichuan, China

^b Department of Radiation Oncology Physics and Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Ji Yan Road No.440, 250117 Jinan, China

^c Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China

Enhanced MR scans with different delay times show significant differences in the boundaries and shapes of large-volume BMs, and time-delayed multiphase CE scanning should be used in GTV determination, with time phases ≥ 10 min being mandatory.

Prospective study

ROMA 30-31 GENNAIO 2025

Update degli Studi Practice Changing 2024

n = 155 pts for 561 lesions

S. Du et al.

Radiotherapy and Oncology 197 (2024) 110330

Fig. 2. Changes of the BMs boundary in a patient at different delay times. A-F show the gross tumor target volume (GTV) determination of the BMs at different delay times. G shows that all six determined GTVs are on the 1-min image, which suggests a significant change in tumor boundaries at different delay times.

CHALLENGES IN CANCER-ASSOCIATED THROMBOSIS

Eva. N. Hamulyák,¹ Shlomit Yust-Katz,² and Avi Leader³

with brain metastasis

Management of anticoagulation in patients

Low Intermediate Thrombotic Risk	Isolated distal DVT Isolated subsegmental PE	Despite of a clinically relevant risk of progression, the sites and the nature of recurrence are less commonly life threatening	Conside anticoagu recommend dose-r anticoa IVC filter is not usually Surveillance Lower-e
			ultrasound dopplers for proxi
Standard High Thrombotic Risk	Acute proximal lower- extremity DVT or PE with or without concomitant lower- extremity DVT (excluding isoalted subsegmental PE)		Consider placeme IVC filter for patie have a very hig anticoagulant-associd or recent ICH preclu dose anticoc

Clinical recommendations

ROMA 30-31 GENNAIO 2025

DVT: Deep Venous Thrombosis PE: Pulmonary Embolism ICH: Intracranial Hemorrhage VTE: Venous Thromboembolism

ROMA 30-31 GENNAIO 2025

Single session Radiosurgery (SRS) and Fractionated Stereotactic Radiotherapy (SRT) in the PERIOPERATIVE treatment of brain metastases

Kanakarajan et al. BMC Medical Informatics and Decision Making (2024) 24:177 https://doi.org/10.1186/s12911-024-02579-z BMC Medical Informatics and Decision Making

SYSTEMATIC REVIEW

Open Access

Factors associated with the local control of brain metastases: a systematic search and machine learning application

Hemalatha Kanakarajan^{1*}, Wouter De Baene¹, Karin Gehring^{1,3}, Daniëlle B. P. Eekers⁴, Patrick Hanssens^{2,3} and Margriet Sitskoorn^{1*}

Postoperative SRT

Factors ass

- Higher
 150]
- Post-su
- Larger
- Number
- Lung c [154]
- NSCLO
- Higher

Review

ROMA 30-31 GENNAIO 2025

	Factors associated with worse LC:
	 Higher tumor volume [150, 153, 155, 156, 157, 158, 159, 160, 161, 162] Larger tumor size [152, 155, 157, 158, 163, 164, 165] Presence of meningeal contact [155] Residual/recurrent tumor at GK [165]
sociated with better LC:	Cavity enhancement on MRI before irradiation [156]
radiation dose [148, 149,	Superficial tumors with dural/pial involvement [152]
urgical SRT [151, 152]	Prior radiation treatment [154]
or of fractions [153]	Surgery-to-SRT delay [163]
ar of fractions [155]	Incomplete resection [159]
ancer primary tumor type	
	Older age[155]
C histology [152]	Lower ECOG score [162]
RPA [155]	Presence of more than one brain metastasis [164]

Advances in Radiation Oncology (2024) 9, 101402

advances www.advancesradonc.or

1) What fractionations are used during postoperative SRS?

Critical review

Stereotactic Radiosurgery in the Management of Brain Metastases: A Case-Based Radiosurgery **Society Practice Guideline**

Colton Ladbury, MD,^a Michael Pennock, MD,^b Tugba Yilmaz, MD,^c Nii-Kwanchie Ankrah, MBBS,^d Therese Andraos, MD,^e Emile Gogineni, DO,^e Grace Gwe-Ya Kim, PhD,^f Iris Gibbs, MD,⁹ Helen A. Shih, MD, MPH,^h Jona Hattangadi-Gluth, MD,¹ Samuel T. Chao, MD,¹ Susan C. Pannullo, MD,¹ Ben Slotman, MD, PhD,^k Kristin J. Redmond, MD, MPH,^l Simon S. Lo, MB, ChB,^m and Michael Schulder, MDⁿ^{**}

Guidelines

ROMA 30-31 GENNAIO 2025

When selecting dose fractionation, similar principles to treatment of intact metastases may be applied, though a fractionated approach is often preferred as a means of potentially minimizing risk of toxicity

Advances in Radiation Oncology (2024) 9, 101402

www.advancesradonc.or

Critical review

Stereotactic Radiosurgery in the Management of Brain Metastases: A Case-Based Radiosurgery Society Practice Guideline

Colton Ladbury, MD,^a Michael Pennock, MD,^b Tugba Yilmaz, MD,^c Nii-Kwanchie Ankrah, MBBS,^d Therese Andraos, MD,^e Emile Gogineni, DO,^e Grace Gwe-Ya Kim, PhD,^f Iris Gibbs, MD,^g Helen A. Shih, MD, MPH,^h Jona Hattangadi-Gluth, MD,[†] Samuel T. Chao, MD,[†] Susan C. Pannullo, MD,[†] Ben Slotman, MD, PhD,^k Kristin J. Redmond, MD, MPH,¹ Simon S. Lo, MB, ChB,^m and Michael Schulder, MD^{n,*}

Comparison between potential benefits of preoperative and postoperative SRS Table 3

Preoperative SRS

- Improved target delineation
- Improved local control
- Higher oxygenation
- Decreased risk of subsequent lepte
- Decreased risk of radionecrosis
- Smaller treatment volumes*

ROMA 30-31 GENNAIO 2025

	Postoperative SRS
	 Pathologic confirmation before treatment
	 Compatible with cases with mass effect Immediate treatment of neurologic sympton
omeningeal disease	 Abundant data including level 1 evidence

* May not apply if surgical cavity shrinks significantly postoperatively, but is related to improved target delineation, not needing to cover elective volumes such as surgical tract, and in some cases allowing smaller treatment margins.

† Can be due to either needing urgent decompression to prevent further neurologic decline/damage, or due to logistical challenges of stabilizing and discharging patients with symptomatic disease to allow for outpatient preoperative treatment.

Home > Neurosurgical Review > Article

Preoperative versus postoperative stereotactic radiosurgery for brain metastases: a systematic review and meta-analysis of comparative studies

S. Farzad Maroufi, Mohammad Sadegh Fallahi, S. Parmis Maroufi, Vida Kassaeyan, Paolo

Review | Published: 02 January 2025

Breast

Lung

Other

Melanoma

Inner Circle: Pre-SRS Outer Circle: Post-SR1

Volume 48, article number 16, (2025) Cite this article

Palmisciano & Jason P. Sheehan 🔽 (^ Show fewer authors

- Preoperative and Postoperative SRS showed comparable - overall survival (p = 0.07) - local failure (p = 0.26) - distant failure rates (p = 0.84) - wound issues (p = 0.98)

- Preoperative SRS group had - lower risks of radiation necrosis (p = 0.02) lower risks of leptomeningeal disease(p = 0.03) _

- LINAC RS and Gamma Knife RS
- hypofractionated treatments more common postoperatively

Single-Fraction Versus Fractionated Preoperative Radiosurgery for Resected Brain Metastases: A PROPS-BM International Multicenter Cohort Study

Roshan S. Prabhu, MD, MS ^A *,[†] ⊠ · Tobi Akinyelu, BS * · Zachary K. Vaslow, MD [‡] · … · Samuel T. Chao, MD⁺⁺ · Anthony L. Asher, MD^{*,‡‡} · Stuart H. Burri, MD^{*,†}... Show more

SRS: 15 Gy SRT: 24 Gy in 3#

There was no difference in adverse radiation effect, meningeal disease, or overall survival based on fractionation.

SRT was associated with significantly reduced risk of cavity Local relapse

SRT may be a preferred option for neoadjuvant radiation therapy of resected BMs.

Retrospective study

ROMA 30-31 GENNAIO 2025

n=404

nature communications

Article

n=26

https://doi.org/10.1038/s41467-024-53034-6

Pre-operative stereotactic radiosurgery and peri-operative dexamethasone for resectable brain metastases: a two-arm pilot study evaluating clinical outcomes and immunological correlates

- safety at 4 months
- overall survival at 12-months 66%
- distant brain failure at 12-months 37.3% _
- leptomeningeal disease at 12-months 6%
- local recurrence at 12-months 0%

Prospective trial

No signicantly differences between the two arms

ROMA 30-31 GENNAIO 2025

Update degli Studi Practice Changing 2024

Table 2 | Adverse Events within 4 months

	Arm A (<i>n</i> =	:10)	Arm B (<i>n</i> = 11)	
Adverse Event	Grade 1-2 (%)	Grade 3-4 (%)	Grade 1-2 (%)	Gra 3-4
Altered Mental Status	0	0	0	1 (9.
Cerebral Edema	0	0	0	1 (9.
Cognitive Disturbance	1 (10.0)	0	0	0
Confusion	5 (50.0)	0	1 (9.1)	0
Dysarthria	1 (10.0)	0	0	0
Dysphasia	0	0	1 (9.1)	0
Facial Muscle Weakness	1 (10.0)	0	0	0
Fatigue	2 (20.0)	0	3 (27.3)	0
Gait Abnormality	0	0	1 (9.1)	0
Generalized Muscle Weakness	1 (10.0)	0	1 (9.1)	0
Headache	3 (30.0)	0	2 (18.2)	0
Paresthesia	0	0	1 (9.1)	0
Radiation Necrosis	0	0	1 (9.1)	0
Scalp Pain	1 (10.0)	0	0	0
Somnolence	2 (20.0)	0	0	0
Symptomatic	0	0	1 (9.1)	0
Tremor	0	0	1 (9.1)	0
Vision Changes	1 (10.0)	0	3 (27.3)	0

Routman et al. BMC Cancer (2024) 24:332 https://doi.org/10.1186/s12885-024-12060-9

STUDY PROTOCOL

BMC Cancer

Open Access

Pre-operative vs. post-operative stereotactic radiosurgery for operative metastatic brain tumors: study protocol for a phase III clinical trial

David M. Routman¹, Ignacio Jusue-Torres², Paul D. Brown¹, Daniel M. Trifiletti³, Sujay A. Vora^{1,4}, Desmond A. Brown⁵, Ian F. Parney², Terry C. Burns² and Elizabeth Yan¹

- Age: less than 60 versus those 60 or older
- Number of brain metastases: 1 vs. 2–4 vs. 5–10
- Tumor Size: Planned resection of metastasis < 3.0 cm vs. > 3.0 cm (but < 5.0 cm)
- Primary Malignancy: Lung vs. Radioresistant (melanoma, renal cell carcinoma, sarcoma) vs. Other
- Dural Contact: Yes, versus No, with dural contact defined radiologically as suspicion of loss of a plane between the tumor and dura or within 1 mm.
- RT modality: SRS planned as LINAC vs. Gamma knife

ROMA 30-31 GENNAIO 2025

Arm A: Pre-op SRS followed by surgery (within two weeks post-SRS).

Arm B: Surgery followed by post-op SRS (within four weeks of surgery).

Radiation therapy dosing:

Lesions < 4.2 ccs receive 20 Gy (22 Gy is allowed for subcentimeter metastases) Lesions \geq 4.2c to <8.0 cc receive 18Gy Lesions \geq 8.0 to <14.4 cc receive 17Gy Lesions \geq 14.4 to <20cc receive 15Gy Lesions \geq 20 to <30cc receive 14Gy Lesions \geq 30cc max 12Gy

CERTIFICATE OF QUALITY IN STEREOTACTIC RADIOSURGERY

Presented to

Ospedale Santa Maria Annunziata

To acknowledge their demonstration during an audit on September 30th-October 1st 2024 to operate at a level that meets the ISRS Certification Standards for the treatment of malignant intracranial lesions on Versa HD

Marc LEVIVIER Co-chair | Past President of ISRS Certification Committee

Jan Paddick

Ian PADDICK Co-chair ISRS Certification Committe

*This certificate is valid for three years from the date of audit

Update degli Studi Practice Changing 2024

Grazie dell'attenzione

silvia.scoccianti@uslcentro.toscana.it

